215 research outputs found

    Chronic dietary intake of enniatin B in broiler chickens has low impact on intestinal morphometry and hepatic histology, and shows limited transfer to liver tissue

    Get PDF
    The Fusarium mycotoxin enniatin B (ENN B) is a so-called emerging mycotoxin frequently contaminating poultry feed. To investigate the impact of chronic ENN B exposure on animal health, broiler chickens were fed either a diet naturally contaminated with ENN B (2352 mu g/kg) or a control diet (135 mu g/kg) for 2, 7, 14, or 21 days. ENN B concentrations were determined in plasma and liver using a validated ultra-high performance liquid chromatographytandem mass spectrometry UHPLC-MS/MS method. Liver was evaluated histologically, and the villus length and crypt depth of the duodenum, jejunum, and ileum were measured. Histopathology of the livers did not reveal major abnormalities. Feeding an ENN B-contaminated diet could possibly inhibit the proliferation of enterocytes in the duodenal crypts, but did not affect villus length, crypt depth, or villus length-crypt depth ratio of the jejunum and ileum. ENN B levels in plasma and liver were significantly higher in the ENN B-fed group and ranged between <25-264 pg/mL and <0.05-0.85 ng/g, respectively. ENN B carry-over rates from feed to liver tissue were 0.005-0.014% and 0.034-0.109% in the ENN B and control group, respectively. Carry-over rates were low and indicated a limited contribution of poultry tissue-derived products to the total dietary ENN B intake for humans. The above results support the opinion of the European Food Safety Authority stating that adverse health effects from ENN B in broiler chickens are unlikely

    In vitro rumen simulations show a reduced disappearance of deoxynivalenol, nivalenol and enniatin B at conditions of rumen acidosis and lower microbial activity

    Get PDF
    Ruminants are generally considered to be less susceptible to the effects of mycotoxins than monogastric animals as the rumen microbiota are capable of detoxifying some of these toxins. Despite this potential degradation, mycotoxin-associated subclinical health problems are seen in dairy cows. In this research, the disappearance of several mycotoxins was determined in an in vitro rumen model and the effect of realistic concentrations of those mycotoxins on fermentation was assessed by volatile fatty acid production. In addition, two hypotheses were tested: (1) a lower rumen pH leads to a decreased degradation of mycotoxins and (2) rumen fluid of lactating cows degrade mycotoxins better than rumen fluid of non-lactating cows. Maize silage was spiked with a mixture of deoxynivalenol (DON), nivalenol (NIV), enniatin B (ENN B), mycophenolic acid (MPA), roquefortine C (ROQ-C) and zearalenone (ZEN). Fresh rumen fluid of two lactating cows (L) and two non-lactating cows (N) was added to a buffer of normal pH (6.8) and low pH (5.8), leading to four combinations (L6.8, L5.8, N6.8, N5.8), which were added to the spiked maize substrate. In this study, mycotoxins had no effect on volatile fatty acid production. However, not all mycotoxins fully disappeared during incubation. ENN B and ROQ-C disappeared only partially, whereas MPA showed almost no disappearance. The disappearance of DON, NIV, and ENN B was hampered when pH was low, especially when the inoculum of non-lactating cows was used. For ZEN, a limited transformation of ZEN to alpha-ZEL and beta-ZEL was observed, but only at pH 6.8. In conclusion, based on the type of mycotoxin and the ruminal conditions, mycotoxins can stay intact in the rumen

    New strawberry breeding lines – enhanced phytochemical composition and bioaccessibility

    Get PDF
    Screening of phytochemicals has been of interest in strawberry genotypes as there is emerging evidence from epidemiological and clinical studies that consumption of phytochemical-rich strawberry cultivars may provide health benefits. The aim of the present study was (1) to quantify selected phytochemicals in new strawberry breeding lines (BL) and (2) to assess the in vitro bioaccessibility of phytochemicals as an initial measure to predict their bioavailability

    Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production

    Get PDF
    Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the brewing process. In pilot fermentations, the time of cropping (primary fermentation, lagering) of the spent yeast and the original gravity (12 ËšP, 16 ËšP, 20 ËšP) of the fermentation medium was varied, and four alternative non-Saccharomyces yeast strains were compared with two commercial Saccharomyces yeast strains. In addition, spent yeast was contaminated with the beer spoiler Lactobacillus brevis. The general nutrient composition (total protein, fat, ash) was investigated as well as the proteinogenic amino acid spectrum, the various folate vitamers (5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, H4folate, PteGlu) and the biological activity (reduction, antioxidative potential) of a mechanically (ultrasonic sonotrode) and an autolytically produced yeast extract. All the investigated ingredients from the yeast extract were influenced by the composition of the spent yeast from the brewing process. The biodiversity of the spent yeast from the brewing process therefore directly affects the content of physiologically valuable ingredients of a yeast extract and should be taken into consideration in industrial manufacturing processes

    A sensitive LC-MS/MS method for isomer separation and quantitative determination of 51 pyrrolizidine alkaloids and two tropane alkaloids in cow's milk

    Get PDF
    1,2-Unsaturated pyrrolizidine alkaloids (PA), their corresponding N-oxides (PANO), and tropane alkaloids (TA) are toxic secondary plant metabolites. Their possible transfer into the milk of dairy cows has been studied in feeding trials;however, only few data on the occurrence of these toxins in milk are available. In this study, the development of a sensitive analytical approach for the simultaneous detection and quantification of a broad range of 54 PA/PANO as well as of the TA atropine and scopolamine in milk of dairy cows is presented. The method optimisation focused on sensitivity and separation of PA/PANO isomers. Milk samples were extracted using liquid-liquid extraction with aqueous formic acid and n-hexane, followed by a cation-exchange solid-phase extraction for purification. Reversed phase liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis was performed using alkaline solvent conditions. Validation proved low limits of detection and quantification of 0.005 to 0.054 mu g/L and of 0.009 to 0.123 mu g/L, respectively. For 51 of the 54 tested PA/PANO and both TA, the recovery rates ranged from 64 to 127% with repeatability (RSDr) values below 15% at concentration levels of 0.05 and 0.50 mu g/L and below 8% at a concentration level of 3.00 mu g/L. Only three PANO did not match the validation criteria and were therefore regarded as semiquantitative. The final method was applied to 15 milk samples obtained from milk vending stations at farms and from local marketers in Bavaria, Germany. In three of the milk samples, traces of PA were detected
    • …
    corecore